Integrability of planar polynomial differential systems through linear differential equations . ∗

نویسندگان

  • H. Giacomini
  • J. Giné
  • M. Grau
چکیده

In this work, we consider rational ordinary differential equations dy/dx = Q(x, y)/P (x, y), with Q(x, y) and P (x, y) coprime polynomials with real coefficients. We give a method to construct equations of this type for which a first integral can be expressed from two independent solutions of a second–order homogeneous linear differential equation. This first integral is, in general, given by a non Liouvillian function. We show that all the known families of quadratic systems with an irre-ducible invariant algebraic curve of arbitrarily high degree and without a rational first integral can be constructed by using this method. We also present a new example of this kind of families. We give an analogous method for constructing rational equations but by means of a linear differential equation of first order.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Relationships between Darboux Integrability and Limit Cycles for a Class of Able Equations

We consider the class of polynomial differential equation x&= , 2(,)(,)(,)nnmnmPxyPxyPxy++++2(,)(,)(,)nnmnmyQxyQxyQxy++&=++. For where and are homogeneous polynomials of degree i. Inside this class of polynomial differential equation we consider a subclass of Darboux integrable systems. Moreover, under additional conditions we proved such Darboux integrable systems can have at most 1 limit cycle.

متن کامل

Linearizable ordinary differential equations . ∗

Our purpose in this paper is to study when a planar differential system polynomial in one variable linearizes in the sense that it has an inverse integrating factor which can be constructed by means of the solutions of linear differential equations. We give several families of differential systems which illustrate how the integrability of the system passes through the solutions of a linear diff...

متن کامل

ar X iv : 0 90 9 . 01 13 v 1 [ m at h . D S ] 1 S ep 2 00 9 Weierstrass integrability of differential equations ∗

The integrability problem consists in finding the class of functions a first integral of a given planar polynomial differential system must belong to. We recall the characterization of systems which admit an elementary or Liouvillian first integral. We define Weierstrass integrability and we determine which Weierstrass integrable systems are Liouvillian integrable. Inside this new class of inte...

متن کامل

Generalized cofactors and nonlinear superposition principles

It is known from Lie’s works that the only ordinary differential equation of first order in which the knowledge of a certain number of particular solutions allows the construction of a fundamental set of solutions is, excepting changes of variables, the Riccati equation. For planar complex polynomial differential systems, the classical Darboux integrability theory exists based on the fact that ...

متن کامل

Inverse Problems in Darboux’ Theory of Integrability

The Darboux theory of integrability for planar polynomial differential equations is a classical field, with connections to Lie symmetries, differential algebra and other areas of mathematics. In the present paper we introduce the concepts, problems and inverse problems, and we outline some recent results on inverse problems. We also prove a new result, viz. a general finiteness theorem for the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005